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Structure and stability of solutions of the Euler
equations: a lagrangian approach

By H. K. MorraATT

Department of Applied Mathematics and Theoretical Physics, Silver Street,
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This paper reviews methods that are essentially lagrangian in character for
determination of solutions of the Euler equations having prescribed topological
characteristics. These methods depend in the first instance on the existence of
lagrangian invariants for convected scalar and vector fields. Among these, the
helicity invariant for a convected or ‘frozen-in’ vector field has particular
significance. These invariants, and the associated topological interpretation are
discussed in §§1 and 2. In §3 the method of magnetic relaxation to magnetostatic
equilibria of prescribed topology is briefly described. This provides a powerful
method for determining steady Euler flows through the well-known exact analogy
between Euler flows and magnetostatic equilibria. Stability considerations relating
to magnetostatic equilibria obtained in this way and to the analogous Euler flows are
reviewed in §4. In §5 the related relaxation procedure is discussed; for two-
dimensional and axisymmetric situations this technique provides stable solutions of
the Euler equations for which the vorticity field has prescribed topology. The
concept of flow signature is described in §6: this is the relevant topological
characteristic for two-dimensional or axisymmetric situations, which is conserved
during frozen-field relaxation processes. In §§7 and 8, the formation of tangential
discontinuities as a normal part of the relaxation process when saddle points of the
frozen-field are present is discussed. Section 9 considers briefly the application of
these ideas to the theory of vortons, i.e. rotational disturbances that propagate
without change of structure in an unbounded fluid. The paper concludes with a brief
discussion, with comment on the possible development of the results in the context
of turbulence.
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1. Lagrangian invariants for convected scalar and vector fields

Al

A lagrangian approach to problems of fluid mechanics naturally forces us to focus on
‘material domains’, i.e. on curves, surfaces or volumes (or more generally any set of
‘marked’ fluid particles) that move with the fluid. Of particular interest are
quantities which, when integrated over a material domain, are constants of the
motion. Such integrals may be described as ‘lagrangian invariants’ of the flow.

We consider a velocity field u(x,t) in some fluid domain D and its associated density
field p(x, t)(= 0) satisfying the equation of mass conservation

Dp/Dt = 0p/ot+u-Vp =—pV-u. (1.1)

THE ROYAL
SOCIETY

Let 6(x, ¢) be a scalar field (e.g. dye concentration), which we assume to be passively
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322 H. K. Moffatt

convected by the flow, without any molecular diffusion. The flux of # is uf), so that
0 satisfies the same conservation equation as p, namely

DO/Dt =00/3t+u VO = —6V-u. (1.2)
It follows from (1.1) and (1.2) that
D/Di8/p) =—(0/p) V- u+(8/p*)pV-u=0. (1.3)

Now let S be any closed material surface imbedded within D, containing a (material)
volume V, and consider, for any function ¥, the lagrangian integral

I,= J VF(a/p) pdV. (1.4)

Obviously,
df, ,
—Oﬁ’ = | F/(6/p)D/Dt(6/p)pdV = 0. (1.5)
v
Hence, for arbitrary F, I, is a lagrangian invariant of the flow.
The topological structure of the field 6/p is associated with the structure of the
family of surfaces 6/p = const., each of which moves with the fluid. The volume
integral (1.4) yields a family of surface integrals through the choice

F(6/p) = 60/p—(0/p)e), (1.6)

where (0/p), labels one of these material surfaces, S, say. Let n be the unit normal
on §,; then writing

AV = dndsS = d(8/p)dS/(n-V)(6/p), (1.7)

the integral (1.4) converts to the surface integral

_ pdS
L= Lcm-V) ©/p)’ (1.8)

and this also (for each §,) is a lagrangian invariant.
When the flow is incompressible, and of uniform density, then (with p = 1) the
invariants (1.4) and (1.8) take the simpler form

ds
I,= =| —5. :
o= [ roav. 1= | 55 (19)
In this case, the gradient G = V6 satisfies the equation (Batchelor 1952)
D@,/Dt = — G, 0u,/0x;, (1.10)

and it is interesting to note (from 1.9) that this equation has the lagrangian invariant
IO=J (n-G)~'dS. (1.11)
Se

Suppose now that B(x, ¢) is a solenoidal vector field (V- B = 0) which is convected
by the flow u(x, t) with conservation of the flux of B through every closed material
curve (. This is the fundamental property of a magnetic field in a perfectly

Phil. Trans. R. Soc. Lond. A (1990)
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The Euler equations: a lagrangian approach 323

conducting fluid medium, and we shall use the language of magnetohydrodynamics,
although the results are more generally applicable. We shall suppose that B has a
(single-valued) vector potential A4 satisfying

B=VAA, V-A=0. (1.12)
The equations satisfied by 4 and B are

0A4/dt = u/\(V/\A)—qu,}

0B/t = VA (uAB), (1.13)

where @ is a scalar potential field, which we assume also to be single-valued. The
equivalent lagrangian form for these equations is

D4, 04, d 0w 3

T o (144
D (B B, d

For any unknotted closed material curve C spanned by an orientable surface 2 we
have

IC=§;A'dx=JB'ndS=const. (1.16)
c x

This is the frozen flux theorem of Alfven (1942); for an arbitrary material closed
curve C, I, is a lagrangian invariant.

The solution of (1.15) may be expressed in terms of the lagrangian particle path
x(a, t) which starts from position a at time ¢ = 0. Writing B = B/p, this solution (in
a form anticipated by Cauchy) is

By(x, t) = By(a, 0)0x,/0a;, (1.17)

a form that makes evident the rotation and stretching of the field by the deformation
tensor Ox;/da;, during convection from (a, 0) to (x, t). The equivalent solution of
(1.14) is

A;(x, t) = Aj(a, 0)0a;/0x;—0x/0x; (1.18)

for some scalar field y, constrained by our adoption of the gauge condition
V-4 = 0. Note the appearance of the inverse deformation tensor da,;/dx; in (1.18),
with the consequence that

A(x, t)-B(x, t) = A(a, 0)- B(a, 0)— B(x,t)- Vy (1.19)

a result obtained by Elsasser (1946), although with a different, and rather special,
choice of gauge for which y = 0.
If we now multiply (1.19) by p, and integrate over a material domain V using

JB-VXpdV=JB~VXdV=f(n-B)XdS (1.20)
14 |4 . S
we obtain

JA-BdV=f Ao‘BodV—j (n*B) x dS. (1.21)
v Vo K

Phil. Trans. R. Soc. Lond. A (1990)
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324 H. K. Moffatt

In particular, if S is a ‘magnetic surface’ on which n- B = 0 (a condition that persists
since B is a convected field) then

HM=fA~BdV=eonst. (1.22)
v

This type of invariant was first obtained by Woltjer (1958). H,, is the helicity of the
magnetic field within the material volume V (Moffatt 1969) and it is clearly a
lagrangian invariant.
The lines of force of B(x, t) (or ‘B-lines’) at any instant ¢ are given by solution of
the differential system
dx/B, = dy/B, = dz/B,. (1.23)

In general, this system is non-integrable, and the B-lines then wander chaotically
throughout the fluid domain; exceptionally, however, the B-lines may be closed
curves or may lie on a family of closed surfaces. The following examples illustrate
these possibilities; in each case the domain of definition of B is the sphere » < 1, and
(r, 8, @) are spherical polar coordinates.

Example 1
B = (0,0,B,(r, 0)). (1.24)

For this simple field, the B-lines are circles about the polar axis; the topology of the
field is ‘trivial’ in the sense that every B-line is an unknotted closed curve, and any
two B-lines are unlinked ; the helicity is obviously zero.

Example 2
1 9y —1 dy
B= = = B 1.
(rzsinﬁéﬁ’rsinﬁﬁr’ e 0))’ (1.25)

where the function y(r, 6) is described as the flux function of the meridional (or
‘poloidal’) part of the field. In this case, B-lines lie on tori y(r, ) = const. and in
general cover these tori, although exceptionally they may be closed curves (torus
knots). The field is contained in the sphere provided y(1, 8) = 0, and the helicity is
given by

H, = 4thfqu)rdrd0. (1.26)
Example 3
In cartesian coordinates,
B = (az—8xy, 112* +5y° + 22+ xy — 3, —ax+2yz—uay), (1.27)

where o(# 0) is constant. This is an example of a non-integrable field, whose
properties have been studied by Bajer & Moffatt (1990) and Bajer et al. (1990). Figure
1a shows a portion of a single B-line (which is confined to the sphere » < 1) and figure
1b shows a section of this streamline by the diametral plane x = z, i.e. a ‘Poincaré
section’). About 8000 successive points of section for this single B-line are shown, and
the chaotic wandering is quite evident, although some structure within the chaos is

Phil. Trans. R. Soc. Lond. A (1990)
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The Euler equations : a.lagrangian approach 325

Figure 1. (a) A single chaotic B-line of the field (1.26). (b) Poincaré section of this B-line
(see Bajer et al. 1990).

D
O
Figure 2. Possible configurations of linked flux tubes. (¢) Simple linkage that gives non-zero
helicity. (b) Non-trivial linkage with zero linking number and therefore zero helicity.

evident also. The topology is clearly nontrivial; and the helicity in » < 1, may be
calculated to be
H = —16mna/35. (1.28)

For a chaotic field of this kind, there is but a single helicity invariant of the form
(1.22) for each subdomain V within which a B-line is space-filling. If, however, the B-
lines lie on a family of surfaces 6 = const., then, as for the invariant (1.4), we may
construct associated surface invariants:

H, 2 g8, 1.29
j 0/p (1.29)

There is a further generalization of the helicity invariant (1.22), which may be
constructed as follows (Moffatt 1981): let B, =V A A, and B,=VAA, be two
independent solenoidal vector fields convected by a flow u(x, ), and let S be a closed

material surface, on which
nB =0, nB,=0, (1.30)

and containing the material volume V. Then
H12=J Bl-Ade=j B,-A,dV = const. (1.31)
v v

This is the ‘cross-helicity * between the fields B, and B,.

Phil. Trans. R. Soc. Lond. A (1990)
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2. Helicity invariants and topological structure

The relation between the helicity invariant (1.22) and the topological structure of
the field B is made transparently clear (Moreau 1961; Moffatt 1969) through
consideration of the particular situation in which B is identically zero except in two
flux tubes of small cross-section whose axes are the unknotted closed curves C|, C,
which may be linked (figure 2a). Obviously, the linked configuration is topologically
distinet from the unlinked configuration, and the degree of linkage is conserved
under frozen-field distortion. We suppose that the field lines have no net twist within
either flux tube; this means that either tube may be continuously deformed to a
circular tube (like a bicycle tube) within which the B-lines are all circular and
unlinked; i.e. the topology of the field within either flux tube in isolation is trivial.

In the limit as the tube cross-sections tend to zero, the volume integral (1.22) (with
V the whole space) degenerates to the sum of two line integrals round €, and C, via
the substitutions BdV - @, dx on C,, @,dx on C,, where @, and @, are the magnetic
fluxes in the tubes; and since for example

3€ A-dx = f B-dx,
C'1 Sl

where S, spans €}, and the latter integral equals + @, it follows that
Hy, =+2n®, &,, (2.1)

where » is the relative winding number of €} and C,, and the + or — depends on the
field directions in the two tubes. Helicity therefore clearly has a topological
character, and the invariance of helicity is a consequence of the topological
invariance intrinsic to frozen-field distortion.

The argument in this simple form is of course restricted to fields having closed B-
lines. The argument has however been adapted to more complex topologies by
Arnol’d (1974), who has shown how to give meaning to the double limit

lim nd, @, (2.2)
5%
when the curve () winds infinitely around the (still closed) curve C,. Arnol’d
describes this limit as the ‘asymptotic Hopf invariant’, the relation between
integrals of the form (1.22) and the Hopf (1931) invariant of topological mappings
having been established earlier by Whitehead (1948).

Helicity thus plays a fundamental role in the topological classification of
solenoidal vector fields. However, the complete set of helicity invariants is not nearly
sufficient to provide a complete classification. This may be easily seen by considering
the case when €, and C, have the more complex linkage shown in figure 2b. Here the
toroidal flux across the surface S; spanning C| is zero, and so the helicity integral is
zero as for the case when () and C, are unlinked. And yet the two cases are clearly
topologically distinct. The topology of figure 16 is invariant under evolution
governed by (1.13b), and so any topological invariant that distinguishes this
configuration from the unlinked configuration must be somehow contained in
(1.13b). How can we construct such an invariant ? We develop one possible approach
in the following sections.

Phil. Trans. RB. Soc. Lond. A (1990)
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3. Magnetic relaxation

The style of argument presented in this section was suggested by Arnol’d (1974)
and developed by Moffatt (1985), and is an essential preliminary to the consideration
of steady Euler flows. '

We consider a fluid that is incompressible (V-v = 0) and contained in a domain D
with boundary 0D on which v-n = 0. We consider again a magnetic field B(x, ¢)

satisfying Bn=0 on oD, (3.1)

a condition that persists under evolution governed by the frozen-field equation
(1.13b). We now focus attention on the energy of this field given by

M) = lf B*dV, (3.2)
2)p
which by elementary manipulations satisfies the equation
dd—ﬂf= B'V/\(v/\B)dV=—jv-(j/\B)dV, (3.3)
D

where j= VA B, the current associated with B. (Note that a current sheet
Js =—n A B|,;, may flow on the boundary.)

Let us adopt the simplest possible equation of motion for the fluid which (i)
incorporates the Lorentz force j A B per unit volume appearing naturally in (3.3); (ii)
allows v(x, t) to remain solenoidal for all ¢; and (iii) includes a term that dissipates

This s ‘
energy. This is dv/dt = —Vp+jAB—kv (3.4)
where £ > 0 and p(x, t) is a (pressure) field satisfying

Vip=V:-(jAB) in D, } (3.5)
dp/on=n-(jAB) on aD. ’
Let K(t) be the kinetic energy of the flow:
K(t) = lf v dV. (3.6)
2)p

From (3.4), this satisfies dK

- fv'(j/\B)dV-—%K, (3.7)
so that, from (3.3) and (3.7),

d/de@M(¢)+ K(t)) = —2kK. (3.8)

Hence, for so long as K(t) > 0, the total energy M+ K is monotonic decreasing, and
being positive must tend to a limit. Hence, no matter what the initial conditions may

be,
K({t)—0

M(t) > M® (const.)}
Suppose now that these initial conditions are
B(x, 0) = By(x), v(x, 0)=0, (3.10)

where By(x) is an arbitrary solenoidal field of finite energy. In general, the initial
Lorentz force (V A B,) A B is not irrotational and so cannot be compensated by the

as t—>00. (3.9)

Phil. Trans. R. Soc. Lond. A (1990)
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pressure term in (3.4). The fluid must therefore move, and as it does so, it convects
the field B as a frozen-in field. Thus the kinetic energy K(¢) initially increases from
zero (at the expense of magnetic energy) but ultimately tends to zero again according
to (3.9). For all finite ¢, the flow v(x, {) remains smooth, and induces a continuous
volume-preserving mapping x> X(x, t) associated with the particle paths. For all
finite ¢, the field B evolves through topologically equivalent states, but as ¢t > oo, the
mapping may develop discontinuities and equally the convected field may develop
singularities, although the field energy is strictly under control and bounded from
above by its initial value.

For any non-trivial field topology, the magnetic energy is also bounded below and
away from zero (Arnol’d 1974; Freedman 1988). In order to understand this,
consider a portion of a flux tube of length L and cross-section 4 carrying uniform
field B; the flux @ = BA and the volume V = LA are conserved under frozen-field
distortion of the kind considered. The contribution to magnetic energy from this
portion of tube is 1BV = }V-'@2L2% Hence the energy decreases through reduction of
L, i.e. contraction of the tube, together with corresponding increase of its cross-
section. The energy can tend to zero only if this process is carried to the limit in which
every closed B-line contracts to a point, as is possible (figure 3a) if the topology is
trivial. It cannot happen however if the topology is nontrivial (figure 3b); for then
the contraction of a flux tube is inevitably impeded by the growth of cross-section
of any other flux tube with which it is linked. This argument is given expression in
the formal language of topology by Freedman (1988).

It is clear from this description of the process of magnetic relaxation that, as
t— oo, tangential discontinuities of B must form wherever linked flux tubes are
ultimately brought into contact, and that the asymptotic equilibrium state B%(x)
characterized by the magnetic energy M* (> 0) will generally contain tangential
discontinuities (current sheets) imbedded within the domain D. This appears to be
the case even if the initial field By(x) is C*, because the rearrangement of B-lines
during relaxation will still generally tend to produce tangential discontinuities. An
example may make this clear: let D be the cylinder s <a (in cylindrical polar
coordinates (s, @, 2)) and let By(x) = (0, B,,(s), By,(s)), where By (s) and B,,(s) are ('
functions of non-overlapping bounded supports, as indicated in figure 4. Relaxation
can proceed through rearrangement of the circular B-lines in the region s, < s < a,
the ‘stronger’ field lines from the outer region near s = a displacing the ‘weaker’ field
lines in the inner region near s = s,. Minimum energy is achieved by a field of the
form

B"(x) = (0, BE(s), By,(s)) (3.11)
where s7'B"(s) is the ‘rearrangement’ of s7'B, (s) that makes
E 2
%(B 9(8)) <0 (s, <s<a) (3.12)

In this state, there is clearly a tangential discontinuity of B¥ of magnitude
s, max |B, (s)/s| across s = s,. Note that the rearrangement is achieved by a flow of
the form

Op

o(x, 1) = (vy(s, 2, 1), 0, ws, 2z 0) (t>0), (3.13)

but the asymptotic state is z-independent.
In general, therefore, we are driven to the conclusion that B relaxes to a
magnetostatic equilibrium state B*(x) which is topologically accessible from B(x) in

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 3. The process of magnetic relaxation. () Trivial topology, for which magnetic energy
can decrease to zero. (b) Non-trivial topology providing an impediment to relaxation.
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Figure 4. Relaxation of a cylindrically symmetric field to a state of minimum magnetic energy.

the sense that it is obtained from By(x) through convection and distortion by a flow
v(x, t) (0 <t < 00) which dissipates a finite fraction of the initial field energy. BE(x)
may have tangential discontinuities, or possibly more awkward singularities (e.g.
accumulation points of tangential discontinuities); it would be nice to characterise
the properties of the function space in which the relaxed fields BZ(x) reside; this is
as yet an unsolved problem.

Being a magnetostatic equilibrium (with v = 0), B¥(x) satisfies the equation

JEANBE = (VA BEYA BE = Vpt (3.14)

for some scalar field pZ(x). The field is characterised by its magnetic energy M* which
is clearly minimal with respect to small frozen-field perturbations of the medium (for
a full discussion see Moffatt 1986 «). There may be more than one such equilibrium
topologically accessible from an initial field By(x) by different routes in function
space (by adopting a non-zero initial condition for v(x, t), or by using a different
dissipative mechanism in (3.4) or by varying the relaxation process in some other
way). Among these equilibria, however, there is always one whose energy M%(> 0)
is least (or more than one with equal least energy); such a state (or states) are the
most stable (or ‘ground’) states available to the field with its prescribed topology.

These considerations have interesting implications for the theory of topological
invariants of knots and links in R3. Suppose for example that we have an arbitrary
knot K, and let J (K) be a tubular neighbourhood of the knot of cross-section
A = me?. Let By(x) be a field of magnitude B, within 7 ,(K) aligned along the axis of
the tube, so that the magnetic flux is @ = B;A. The volume of 7 (K) is LA where L is
the length of the knot. We now let this field relax as already described. During this
process @ and V are invariant, and so also is the helicity of the field, which, for
dimensional reasons, must be of the form

H = ho? (3.15)
Phil. Trans. R. Soc. Lond. A (1990)
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where A is a dimensionless number (which may be positive or negative or zero). As
shown by Berger & Field (1984), with a particular convention for the field twist
within the tube, h = N, —N_ where N, are the numbers of positive and negative
crossovers in a plane projection of the knot. Even more interestingly, the field relaxes
to a minimum energy state compatible with the knot topology, and the energy M*
in this state, again for dimensional reasons, must have the form

ME = m@2Vs, (3.16)

where m(> 0) is a real number determined solely by the original knot topology. The
number m is a topological invariant, and generally (excluding mirror symmetries)
two topologically distinct knots will yield distinct values of m. Of course if there is
more than one minimum energy state for a given knot, then we obtain a sequence of
numbers (m,, my, m,,...) with 0 < m, < m,; <m, < ... characterizing these states.
Similar considerations apply to links. We may then talk unambiguously of ‘the
energy spectrum of knots and links’, a point of view developed in more detail by
Moffatt (19905). Parallel developments on the purely topological side are given in
Freedman & He (1990a,b).

4. Stability of magnetostatic equilibria and of analogous Euler flows

The techniques described in §3 provide a means by which magnetostatic
equilibrium states of prescribed magnetic field topology may (at least in principle) be
constructed. It is well-known that such states are characterized by a magnetic energy
that is stationary with respect to small frozen-field displacements, and that stability
is assured if the magnetic energy is in fact minimal with respect to such displacements
(Bernstein et al. 1958). The magnetic relaxation technique will generally yield such
stable states, since the magnetic energy may be expected in general to decrease to a
minimum rather than a saddle point within the subspace of fields that are
topologically accessible from the initial field.

Let &(x) be a small volume-preserving virtual displacement of the medium. Then,
as described in Moffatt (1986a), the first and second order variations of B about the
equilibirum state B are given by

'B=VAEABE), 2B=1LiVA(EASIBY, (4.1)

and the corresponding variations of magnetic energy are

MM = f BE-3'BdV (4.2)
D

M = f (BE-8:B+1(3'B)?)dV. (4.3)
D

It is easy to show that 0'M = 0 when B” satisfies the magnetostatic equilibrium
conditions, and stability is then guaranteed provided

M =0 (4.4)

for all ‘admissible’ displacement fields &(x). For the reasons given above, we expect
(4.4) to be satisfied for any magnetostatic equilibrium that is the outcome of a
magnetic relaxation process. For example, the condition (3.12) is equivalent to (4.4)
for the cylindrically symmetric equilibrium (3.11), provided that only axisymmetric
displacement fields are admitted.
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The magnetosﬁatic equilibria considered above have a double interest, since to
each such equilibrium, there corresponds (by exact analogy) a solution of the steady
Euler equations of classical (inviscid) fluid mechanics. Thus, by the substitutions

BE uf, jE > of pf>—h" (4.5)

the magnetostatic equations

JEANBE=VpE jE=VABE V-BE=0 (4.6)
are replaced by the steady Euler equations
U ANoE =VhE, of =VAuE, V-uf =0 (4.7)

for an incompressible inviscid fluid. Here, A¥ is the (Bernoulli) total ‘head’ in the
analogue fluid. The minus sign in the analogue relation p# - —A¥ is to be particularly
noted ; physically, this is related to the fact that the Lorentz force associated with a
curved magnetic flux tube acts towards the centre of curvature, whereas the
centrifugal force in the analogous curved stream tube acts away from the centre of
curvature. This change of sign is immaterial as far as the structure of equilibrium
states is concerned ; but it is of critical importance in relation to the stability of these
states.

The stability problem for the analogous Euler flow u*(x) is different from that for
the magnetostatic field B®(x) because, under the unsteady Euler equations

u/ot =unw—Vh, V-u=0, (4.8)

it is the vorticity field, rather than the velocity field, that has a ‘frozen-in’ character.
Thus, under virtual displacements &(x), the first and second order perturbations of
vorticity (cf. (4.11)) are

Mo =VAEANDE), 8w =31VAEAdo). (4.9)
The associated first and second order perturbations of velocity are then
Mu = (EN0F),, 0%u=3}EN0 o), (4.10)

where the suffix s denotes the ‘solenoidal projection’ of the vector, obtained by
standard techniques, to guarantee that

V-3'u=V-8®u=0. (4.11)

The first and second order variations of kinetic energy are then given (cf. (4.2) and
(4.3)) by

M{:qu-aludV, (4.12)
D

0K = J (U S*u+3(8"u)?)dV. (4.13)
D

Again, it is easy to show that, by virtue of (4.7) together with #”-n =0 on oD,
0K = 0. (4.14)

Note now, however, that 62K is a different functional of & from %M, so that we may
make no deduction from (4.4) concerning the sign of 62K. The best that can be
deduced in general (Moffatt 1986 ) is that (on identifying the equilibrium states B*
and uf),

0K = —8M (4.15)
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332 H. K. Moffatt

for all volume-preserving displacements £. Thus the kinetic energy of an Euler flow
that is the analogue of a stable magnetostatic equilibrium may be maximal or
minimal or neither (i.e. a saddle) with respect to virtual displacements, the vorticity
field being frozen in the fluid.

According to an argument of Arnol’d (1966) the Euler flow is stable if the kinetic
energy is maximal or minimal, i.e. if

02K =0 for all admissible &, (4.16)
or 0*K <0 for all admissible &. (4.17)

The reason is that the perturbed flow u(x, f) evolves under the kinetic energy
constraint K = const. If K is maximal when u = u”(x), then the perturbed flow
remains permanently in a neighbourhood of #”(x) (at least with respect to an energy
norm); similarly if K is minimal. However, if K is neither maximal or minimal, the
‘surfaces” K = const. have hyperbolic structure near the equilibrium point #”(x) in
the relevant function space, and the condition K = const. therefore places no
constraint on the magnitude of the perturbation wu(x, t)—u®(x); hence if 62K is
indefinite in sign, the flow ##(x) may (and presumably will) be unstable.

5. The relaxation procedure of Vallis ez al. (1989)

The magnetic relaxation procedure described in §3 is ‘natural’ to the problem of
locating stable magnetostatic equilibria because it respects the frozen-in character of
the magnetic field, which is the essential feature of the stability problem. It is not
natural to the problem of locating stable Euler flows, because magnetic relaxation
occurs in a subspace that does not span the space of perturbations governed by the
unsteady Euler equations in which the vorticity field is frozen-in.

It is important therefore to enquire whether there are alternative relaxation
procedures that are natural to the Euler equations in the sense that relaxation to
equilibrium occurs in the subspace in which perturbations most naturally evolve, i.e.
the subspace of flows @(x, ) for which the vorticity field o(x, ¢) is topologically
accessible from some initial reference field @,(x). One such procedure, which we shall
describe as ‘VCY relaxation’, has been devised by Vallis et al. (1989): Suppose that
the vorticity @ =V Au is artificially constrained to evolve under the frozen-field
equation

0w/t =V A (v Aw), (56.1)
where
v=u+adu/dt (5.2)

and a is a constant. Under evolution determined by (5.1), the topology of the
vorticity field is certainly conserved; in particular, the helicity

%’=Ju'de (5.3)
D

is invariant, being still a measure of the ‘degree of knottedness’ of the vorticity field.
The kinetic energy K of the flow is not, however, conserved when a # 0; in fact
elementary manipulations yield

di1

@ELude = -—acf(au/at)de. (5.4)
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Hence, if o > 0(< 0), then K is monotonic decreasing (increasing) for so long as
Ou/dt # 0. Unfortunately, this is not sufficient in general to guarantee the existence
of non-trivial steady states. Unless either a non-zero lower bound or an upper bound
can be placed on K, there is no guarantee that K does not simply tend to zero when
a > 0, or that K does not increase without limit when a < 0. In either case, no useful
conclusion may be drawn.

There are, however, two special circumstances in which an upper bound can be
placed on K, and useful conclusions may be drawn.

(@) Two-dimensional flows
Suppose that

u = (O /3y, — /ox, 0) (5.5)
0 =(0,0, v,), (5.6)

where w, = — V%) and ¢ = {(x, y, t). Then (5.1) describes convection of the vortex
lines by the flow v, and the enstrophy of the flow,

and

Q= f w2 dxdy, (5.7)
D

is conserved. Moreover the kinetic energy is bounded by a Poincaré inequality of the

form
K < kAQ = const., (5.8)

where A4 is the cross-sectional area of the (two-dimensional) domain D, and k is a
dimensionless number of order unity determined solely by the shape of D. Hence,
choosing a < 0 in (5.2) and (5.4), K is monotonic increasing and bounded above and
therefore tends to a constant. Hence from (5.4), 0u/0t — 0 (at least almost everywhere)
and so as described by Vallis et al. (1989), u tends to an equilibrium state #*(x) whose
vorticity field @#(x) is topologically accessible from the initial field @,(x). In this two-
dimensional context, the vorticity field o = (0, 0, wf) is obtained simply by
rearrangement of the vortex lines of @, = (0, 0, w,); the word ‘isovortical’ is
frequently used in this context to describe two vorticity fields w,(x), w,(x) such that

wy(X) = w,(x)

where x — X is an area-preserving orientable continuous mapping in the plane (i.e. a
rearrangement in the above sense).

Flows obtained by this procedure will in general have maximal energy with respect
to isovortical perturbations, and will therefore be stable, by Arnol’d’s (1966)
criterion.

We note that the procedure described above has close points of contact with the
procedure used by Campbell & Kadtke (1987) (see Aref et al. 1988) to determine
absolutely stationary configurations of systems of point vortices, i.e. steady solutions
of the Euler equations of prescribed (and very particular) vorticity topology.

(b) Axisymmetric flows
Suppose now that, in spherical polar coordinates (r, 6, ¢),

w1y
“= (rgsinﬁa(p rsing o’ O) (59
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and o= (0,0, 0,r 0,1), (5.10)
where y = (r, 0, t) and
1 /(o sinfd 1 oy (5.11)
77 rsin@\or? ' 92 0sinf30) '

In this case (5.1) implies that

D( o
%o )=
Dt (r sin 0) 0 (6.12)
where
D 0
so that, in particular,
4
f(-—‘i’ﬂ—) dV = const. (5.14)
rsin 0

Hence the enstrophy is bounded above, since

2
Q=fw;dV=f(—w‘F—) (r sin6)2dV
D

r sin @

< U (—“’L>4d Vf (r sin 6)*d V}E = const. (5.15)
D D

rsin 6

Hence K is also bounded above, since an inequality of the form (5.8) still applies, 4
being now the area of a meridional section of the axisymmetric domain D.

Hence in this case also VCY relaxation with o < 0 will in principle yield stable
Euler flows for which again the vorticity field @ (x) is topologically accessible from
the initial field @,(x).

The procedure of Vallis ef al. (1989) has been placed in a more general context by
Shepherd (1990) who shows how any hamiltonian dynamical system may be modified
in such a way as to drive the system towards an energy maximum or minimum (if
such a state exists) while conserving those invariants (known in two-dimensional
contexts as Casimirs) that are essentially topological in character. The technique can
therefore be applied not only to the Euler flow problem, but also to more complex
systems of equations involving effects of stratification and/or compressibility. A
more elaborate relaxation procedure has also been advocated (Moffatt 1989) to
establish the existence of steady solutions {u(x), B(x)} of the magnetohydro-
dynamic equations of an ideal fluid, the topology of both fields # and B being
prescribed in a compatible manner.

6. Flow signature

Consider again the magnetic relaxation problem in a two dimensional domain D,
with magnetic field expressible in terms of a flux function y(x, y, ¢) by

B = (0x/dy, —0x/ 0w, 0). (6.1)
The B-lines are then the contours y = const., and in particular we may suppose that
x=0 on 09. (6.2)
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Let us suppose first that y,(z, y) = x(«, y, 0) has only one stationary point P, in the
interior of D and that this is a maximum; then B = 0 at P, and the B-lines are (in
general) elliptic in a neighbourhood of P,.

Let A(y,) be the area enclosed by the curve y,=x, where y. is a constant
satisfying 0 < x, < Xmax- Obviously, 4(y,) is monotonic decreasing in this interval,
with

A(0) = Ap, A(Xmax) =0 (6.3)
where A} is the area of D. Moreover, if B is differentiable, then

A=0(Xmax—Xc) when Xe ™ Xmax- (6.4)

During magnetic relaxation, the B-lines are frozen in the fluid and the frozen-
field equation becomes simply Dy/Dt = 0. If we focus attention on one B-line
x(x, y, t) = x., then, since the flow is incompressible, the area within this B-line is
constant, i.e. the function A(y,) is an invariant of the relaxation process. It is
therefore appropriate to describe A(y,) as the signature of the field (Moffatt 19865).

Since relaxation proceeds in such a way as to decrease magnetic energy, it is
obvious that |B| must remain everywhere bounded and hence y(z, y, t) remains
differentiable for all £. In the asymptotic equilibrium situation (¢— o), x(, ¥y, t) -
x%(x, y), where

Vix® = F(x") (6.5)
for some (current) function F(x*); this is the well-known Grad—Shafranov equation
describing two-dimensional magnetostatic equilibrium. The nature of the relaxation
process allows us to assert that, for every signature function satisfying (6.3), (6.4) and
A’(x.) <0, there exists a magnetostatic equilibrium in D; the function F(y*)
characterising this equilibrium is in principle determined by the signature function
which may equally be expressed as a function A(y?). Indeed, elimination of yZ
between the equations

F=F(x"), A=AKx") (6.6)
in general implies a relation
F=FA). (6.7)
A simple example may make this clear. If D is the elliptic domain
D: 2*/a®+y2/b* < 1 (6.8)
then (6.5) is satisfied by
X5(@, Y) = Xmax (1—2%/a®—y?/b%) (6.9)
provided ]
F(x%) = —2xmax (1/a% 4+ 1/b%) = const. (6.10)
The signature function for this field is
A(X) =Tca’b(1—X/Xmax) (6.11)

Hence only a field By(x, y) with this (linear) signature can relax to the equilibrium
(6.9) for which all field lines are ellipses.

Suppose now that we start at ¢ = 0 with a field B(x, y) with elliptic streamlines so
that

Xo(@, y) = G(1—2/a®—y?/b?) (6.12)
for some monotonic function G(+). The signature function is then
A(x,) = mab(1— G5 (Xc)). (6.13)
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B, B"
= —~ ® >
Figure 5. Relaxation of a field initially confined to an elliptic pathway within an elliptic
domain; the path contracts to a minimum length, the contained area 4, being conserved.

Hence an initial field with arbitrary (monotonic) signature can easily be constructed ;
e.g. if
A(Xe) = nab(l_Xc/Xmax)2’ (614)
then
G(Y) = [1= (1= ¥ Yo (6.15)

and the required initial field is
Xo(@, y) = [1—(@*/a®+y*/b*) Y mmax- (6.16)

This field cannot relax to the field (6.9), but must relax to a smooth magnetostatic
equilibrium with non-elliptic B-lines, and non-trivial current function F(x¥). %)

The reason for the appearance of non-elliptic B-lines can be easily understood: in
the absence of any boundary constraint, each B-line would relax to a configuration
of minimum length for prescribed contained area, i.e. to a circle. In the presence of
the elliptic boundary, this process is impeded, but field lines on which the field is
relatively strong will, as it were, win in the tendency to become circular, and a
compromise between this tendency and the boundary constraint will be achieved. An
extreme situation is illustrated in figure 5, which shows relaxation of a field initially
confined to an elliptic ‘pathway’ within D; if the area A4, inside this pathway is less
than nb?, then relaxation to circular B-lines is possible; if however nb? < 4, < ma?, as
illustrated, then the relaxed field lies on a pathway that is part circular and part
elliptic, with smooth joining at the boundary. This is the path of minimum length
containing the prescribed area 4.

More generally, the problem of determining two-dimensional magnetostatic
equilibria (and hence of course of analogous Euler flows) is evidently expressible in
the following form: for given D and given signature A(y) satisfying (6.3) and (6.4),
find the function y(z, ) that minimizes the energy if,(Vy)?>dxdy. Specification of
A(y) amounts to a topological constraint. The method of magnetic relaxation
provides a computational algorithm for the solution of a wide range of problems of
this kind.

The signature concept is easily extended to axisymmetric configurations described
by a (Stokes) flux function y(r, €, ). In this case it is the volume V(y) of each torus
X = const. that is conserved during magnetic relaxation, so that V(y) is the
appropriate signature. If in addition there is a toroidal component of field B,(r, 0, {),
then the toroidal flux W(y) within the torus y = const. is also conserved, so that the
signature is now the pair {V(x), W(y)}. We shall find a use for this in §9 below.

7. The formation of discontinuities near saddle points

If the initial field y,(x, ) in the two-dimensional relaxation considered in §6 has
any saddle points, then tangential discontinuities of B may form during relaxation,
by the mechanism indicated in figure 6. The B lines are hyperbolic in the
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Lorentz 2 ~——
=E — PR

field discontinuity

Figure 6. Mechanism by which a tangential discontinuity may form at an intersection of
separatrices.

Figure 7. Relaxation of the prototype field (7.1), showing the development of a tangential
discontinuity (Bajer 1989).

10+ |
0.8
M(t)/M(0)
&3
] >3
kt = 36
0.4 -
B —5 " .
0 10 20 ke 30 0 02 X 04

Figure 8. (a) Relaxation of energy for the process depicted in figure 7. (b) Plot of V2y against
¥, showing evidence of a functional relation, when k¢t = 36 (Bajer 1989).

neighbourhood of the saddle point, and the Lorentz force may act in such a way as
to cause the angle between the separatrices to collapse to zero. This process has been
analysed numerically by Bajer (1989); figure 7 shows the nature of the relaxation
process, computed on the basis of (1.13) and (3.4) for initial flux function

Xo(r, ) = r*(1—7?%) (cos® O, — cos?0), (7.1)

where 26, is the acute angle between the separatrices at » = 0. The contours 4 =
const. are shown for cos? 6, = 0.8(6, = 27°) and kt = 0, 36, and the formation of the
field discontinuity is clear. There are severe numerical problems in following this
process to the asymptotic limit, but the qualitative nature of the process is clear.
During this relaxation process, the energy settles down quite rapidly (figure 8a)
to its asymptotic level (about 67 % of its initial value) but fine-scale adjustment to
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equilibrium in the neighbourhood of the cuspidal singularities is relatively slow as
may be seen from the plot of V2y against y at kt = 36 (figure 8b). In equilibrium a
functional relation V2y = F(y) must emerge, and the scatter of points near y =0
provides an indication of persisting disequilibrium near the cusps. There seems little
doubt however that the equilibrium field structure is nearly attained in figure 7b at
kt = 36, and only numerical problems limit the accuracy with which this equilibrium
state may be determined.

Our interest here is in the analogous Euler flow, for which the asymptotic flux
function y%(r,0) is replaced by an analogous stream function y#(r, 8). Figure 7b then
represents the streamlines of a steady Euler flow, with a non-uniform vortex sheet
on the segment between the two cusps. This flow is presumably unstable to a
Kelvin—Helmholtz type of instability ; but its existence is nevertheless of considerable
interest, and it is hard to see how this existence could be inferred other than via the
magnetostatic analogy and the magnetic relaxation argument.